Using Wikipedia Anchor Text and Weighted Clustering Coefficient to Enhance the Traditional Multi-document Summarization
نویسندگان
چکیده
Similar to the traditional approach, we consider the task of summarization as selection of top ranked sentences from ranked sentenceclusters. To achieve this goal, we rank the sentence clusters by using the importance of words calculated by using page rank algorithm on reverse directed word graph of sentences. Next, to rank the sentences in every cluster we introduce the use of weighted clustering coefficient. We use page rank score of words for calculation of weighted clustering coefficient. Finally the most important issue is the presence of a lot of noisy entries in the text, which downgrades the performance of most of the text mining algorithms. To solve this problem, we introduce the use of Wikipedia anchor text based phrase mapping scheme. Our experimental results on DUC-2002 and DUC-2004 dataset show that our system performs better than unsupervised systems and better than/comparable with novel supervised systems of this area.
منابع مشابه
A survey on Automatic Text Summarization
Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...
متن کاملA new graph based text segmentation using Wikipedia for automatic text summarization
The technology of automatic document summarization is maturing and may provide a solution to the information overload problem. Nowadays, document summarization plays an important role in information retrieval. With a large volume of documents, presenting the user with a summary of each document greatly facilitates the task of finding the desired documents. Document summarization is a process of...
متن کاملArabic text summarization based on latent semantic analysis to enhance arabic documents clustering
Arabic Documents Clustering is an important task for obtaining good results with the traditional Information Retrieval (IR) systems especially with the rapid growth of the number of online documents present in Arabic language. Documents clustering aim to automatically group similar documents in one cluster using different similarity/distance measures. This task is often affected by the document...
متن کاملGraph-based models for multi-document summarization
University of Ljubljana Faculty of Computer and Information Science Ercan Canhasi Graph-based models for multi-document summarization is thesis is about automatic document summarization, with experimental results on general, query, update and comparative multi-document summarization (MDS). We describe prior work and our own improvements on some important aspects of a summarization system, incl...
متن کاملText Summarization Using Cuckoo Search Optimization Algorithm
Today, with rapid growth of the World Wide Web and creation of Internet sites and online text resources, text summarization issue is highly attended by various researchers. Extractive-based text summarization is an important summarization method which is included of selecting the top representative sentences from the input document. When, we are facing into large data volume documents, the extr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012